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b.  Example 2

The fundamental relation for the entropy of an electron gas can be approximated as
S(U,V,N) =B N" v U where (A)

Here, kg denotes the Boltzmann constant that has a value of EINA‘.ag = 1.3804x107°
kJ K', hp is the Planck constant that has a value of 6.62517%1077 kJ s, m denotes the
electron mass of 9.1086x10~" kg, N the number of kmoles of the gas, V its volume in

m’, and U its energy in kJ. Determine 5, T, and P when U = 4000 kJ k mole ', and Vv

=1.2m’ kmole™.

Solution

The value of B = 521442 kg"? k mole"® s K™'. From Eq. (A),

B

$ =5.21442 (kg"? K" Kmole'® 5)(1.2 m” k mole™") ' (4000 kJ kmole™) *.
Recalling that the units kg (m/s)m=1.

350 kg"? m kJ'? kmole ™ K™'. =350.45 kJ kmole ' K.

S
From the entropy fundamental equation
/T =(95/01) V.
Differentiating Eq. (C) with respect to u and using this relation,
1/T=(1/2) BV"/u"* =0.04381 or T=22.8 K. (D)
Similarly, since
P/IT = (J5/DV),,
Upon differentiating Eq. (C) and using the above relation,
P/IT=(1/3) Bu"¥ v =9435kPaK . (E)
Using the value for T = 22.83 K, the pressure P =2222 .4 kPa.. The enthalpy
h=T+PV=4000+ 22224 x 1.2=6666.9 kJ kmole™",
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h. Example 8
Obtain a relation for ds for an ideal gas. Using the criterion for an exact differential
show that for this gas ¢, is only a function of temperature.

Solution
For an ideal gas

P=RT/. (A)
Using Eq. (A) and Eq. (32), we obtain
ds =R (dv/v) + ¢, (dT/T). (B)

Comparing Eq. (B) with the relation dZ = Mdx + Ndy, and using the criterion for an
exact differential we obtain

A (cy/TYAv}1 =0 {(RV)IT}, = 0.

since at constant volume (R/v) is not a function of temperature (or pressure). There-
fore, the term d{(c,/T)/dv}y is not a function of v and, at most, is a function of tem-

perature alone.

J. Example 10
A VW gas is used as the working fluid in an ideal power cycle. A relation between T
and v is required for an isentropic process (data for ¢, (T) is available). If v; = 0.006
m kg_l, T, =200 K, the compression ratio v;/v, = 3, determine the values of T, and
P, if the gas is air.

Solution
Recall that

ds = ¢, dT/T + (dP/dT)vdv, i.e., ds = cv dT/T + R dv/(v-b) (A)

P=RT/(v—-b)—alT" v (v+c))

where n=1/2, ¢=b for a RK fluid, n=0, ¢c=0 for VW fluids, and n=1, ¢=0 for Berthelot fluids.



Using the criterion for an exact differential,

(dey/av)r =d [{R/(v — b)}/dT], = 0.
This implies that c, is not a function of volume and is a function of temperature alone,
1.€., ¢y = Cyo(T). Since ds = 0 for the ideal cycle, upon integrating Eq. (A),

Jew dT/T==R In(v—b) + C. (B)
Since, s’ = Jcp‘(,dT,fT, we define

(s)(T) = ey dT/T =[(cpo, — R)T/T=s"~RIn T. (C)
We use Egs. (B) and (C) to obtain the relation

(s)’'=—Rn {(v-b)} +C".
Therefore,

(52)°= (1) = R In((vi~ b)/(v2 — b)). (D)
Simplifying,

exp ((s2)/R = (s1)"/R) = (exp (s2"/R)/T2)/(exp(s;"/R)/Ty) = (va—b)/(vi = b). (E)
Upon defining v; = exp (s"/R)/T, Eq. (E) can be written in the form

Via/Vip = (va — b)/(vy — b). (F)
Values of v, are usually tabulated. Once the volume ratio v,/v; is specified, T, can be

determined from Eq. (F). Using the VW equation of state, we can then determine P.
Since, v; =0.006 m” kg™' at T, = 200 K, the VW equation yields

P, =0.08314 x 200 + (0.006 x 28.97 — 0.0367) — 1.368 + (0.006 x 28.97)’
=121.3 -45.3 = 76 bar.
At T=200 K, v,; = 1707. We will use the relation
Vr'_”'livrl = (VE - b)"lr(vl - b)'s

and the values v; =0.006 m” kg ', b= 0.0367 = 28.97 = 0.00127 m’ kg .
Therefore,

v2=0.006 +3=0.002 m’ kg, and

Via/Ver = (0.002 — 0.00127) + (0.006 — 0.00127) = 0.154, so that

Vo = 1707 x 0.154 = 262.9.

The tabulated values indicate that at v, =263, T, =423 K.
Finally, using the VW equation of state
P, =0.08314 x 423 = (0.002 x 28.97-0.0367) — 1.368 = (0.002 x 28.97)’

= 1656 — 408= 1248 bar.




k. Example 11

Derive an expression for the sound speed (c* = —v*}(dP/dv)s = v/Bs) in terms of the
measurable properties of a simple compressible substance.
Show that cp/c, =k = Br/P..

Determine a relation for the sound speed for an ideal gas.
Determine a relation for the sound speed for a VW gas.

Solution

Recall that the speed of sound
¢’ = —v*(IP/IV)s = v/Ps

ds = 0 =¢, dT/T + (dP/dT), dv, and (A)

ds =0 = ¢,dT/T —~(av/dT)p dP. (B)

We multiply Eq. (A) by (T/c,) and Eq. (B) by (T/c,) and then subtract one of the re-
sulting relations from the other to obtain

(dP/IT), (T/e,) dv, + (av/dT), (T/c,) AP, =0, or (C)
(dP/dv)s = — k (JP/AT),/(dv/dT)p, where (D)
k(T,v) = cp(T,v)/cy(T,v). (E)

Applying the expression for the speed of sound ¢* = —v*(dP/dv), = v/ in Eq. (D),
¢ =v? K(T,v)(dP/OT) /(dv/OT)p. (F)

Using the cyclical rule

(dP/IV)1(dv/dT)p(dT/AP), = -1 (G)
we obtain
(av/dT) =— (dP/dT)/(dP/av) (H)

Substituting from Eq. (H) in Eq. (F),

¢? =~ k(T,v) v2 (OP/ov)r.=k(T.v) v/Pr M
With ¢* = v/B,, in Eq. (I)

v/Bs = k(T,v) v/Pr, or k(T,v)= pr/ps.

In the case of'ideal gases,

= (*WV)(-RTH?) = ¢*/RT or ¢* = kRT. J)

Typically we denote c as ¢ for ideal gases.

For a VW gas,
JP/dv = — RT/v — b)Y + 2a/v’ (K)

Thereafter, combining Egs. (I) and (K)

¢ =k(T,v) v’ (RT/v — b)’ +av’) (L)



o. Example 15
Obtain an expression for the enthalpy change dh in a Clausius I fluid that follows the
relation

P = RT/(v-b), (A)

and show that ¢, is a function of T alone.
Solution

Using Eq. (A)
v=b+ RT/P, and (B)

using Eq. (43),

dh=c¢,dT + (v— TR/P) dP = ¢, dT + bdP, i.e., h = h(T,P). (©)
Using the criterion for an exact differential we can show that

dc,/dP = db/dT = 0. (D)

Therefore, ¢, is a function of temperature alone.
Integrating Eq. (C),

h= JCT, (T) dT + bP + constant. (E)

s.  Example 19
Assume that

a(T,v) = a,(T,v) + RT In(v/(v—b)) + (a/(bT"?)) In (v/(v+b)).

Determine an expression for the pressure.

da=-sdT- Pdv

hy; — hy = (hy — Ry )igew — RT((Zy, — Z,

) (12-59)

12-88 Using the cyclic relation and the first Maxwell relation. the other three Maxwell relations are to be
obtained.



12-90 It 1s to be shown that

(dv\ [ éP) épP)
Cu:_T‘THT and ¢ —1’"‘
\oT J \ 2T/, CT Jp
Analysis Using the definition of ¢, .
s ) éP
(=15 ] =15 [F
| cl v
_ . 3 ) (Ev )
Substituting the first Maxwell relation 1ﬁ— =— = ‘
. CP J cl /g
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el .\ T
Using the definition of ¢,.
[ &5 ) (8s | (év)
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12-91 It is to be proven that for a simple compressible substance | f—s | = T

Analysis The proof 1s simply obtained as
" Cu
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12-50

12-75 Methane is compressed adiabatically by a steady-flow compressor. The required power input to the
compressor is to be determined using the generalized charts.

Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.

Analysis The steady-flow energy balance equation for this compressor can be expressed as
S o S0(stead
Ein _Eout = AEsystem (sread) 0
E in — E out
Wi + ity = rith,
WC,in = n'1(h2 _hl)
The enthalpy departures of CH, at the specified states are determined
from the generalized charts to be (Fig. A-29)

T = =263 _ ) 376
Mor, 1911
Py = ——=—"—=0.431
P, 4.64
and
Ty =22-38 509
A T TR R
Py, =P—2_—4=2.155
cr
Thus,
hy —=hy = RT o (Zyy = Zyy) + (hy = 1y)igeal
=(0.5182)(191.1)0.21-0.50)+2.2537(110 —(-10))
=241.7 kJ/kg
Substituting,

Wein =(0.55kg/s)241.7 ki/kg) =133 kW
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APPENDIX D EQUATIONS OF STATE
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